Determinants
For \(n \geq 2\), the determinant of an \(n \times n\) matrix \(A\) is denined as
\[
\begin{align*}
\det A &= \sum_{j=1}^n (-1)^{1+j} a_{1j} detA_{1j} \\\\
&= a_{11}\det A_{11}-a_{12}\det A_{12}+\cdots+(-1)^{1+n}a_{1n}\det A_{1n}\\\\
&= a_{11}C_{11}+a_{12}C_{12} + \cdots + a_{1n}C_{1n}.
\end{align*}
\]
Here, \(C_{ij}=(-1)^{i+j} \det A_{ij}\) is the \((i, j)\)-cofactor of \(A\).
For example, consider the determinant of the matrix:
\[
A = \begin{bmatrix} 3 & 2 & 5 \\ 7 & 5 & 4 \\ 0 & 1 & 0 \end{bmatrix}.
\]
The determinant of \(A\) can be computed using the cofactor expansion across the first row
\[
\begin{align*}
\det A &= 3\det \begin{bmatrix} 5 & 4 \\ 1 & 0 \end{bmatrix}
-2\det \begin{bmatrix} 7 & 4 \\ 0 & 0 \end{bmatrix}
+5\det \begin{bmatrix} 7 & 5 \\ 0 & 1 \end{bmatrix} \\\\
&= 3(-4)-2(0)+5(7) \\\\ & = 23.
\end{align*}
\]
The cofactor expantion can be performed along any row or column.
In general, for an entry \(a_{ij}\) in a matrix \(A\)
\[
\text{Cofactor of } a_{ij} = C_{ij} = (-1)^{i+j} \det A_{ij}
\]
where \(A_{ij}\) is the \((n-1) \times (n-1)\) submatrix obtained by removing the \(i\)-th row and
\(j\)-th column of \(A\).
In addition, the cofactor matrix of \(A\) is the \(n \times n\) matrirx where each
entry is the cofactor of the corresponding element of \(A\).
\[
\text{cofactor }(A) = \begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1n}\\
C_{21} & C_{22} & \cdots & C_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n1} & C_{n2} & \cdots & C_{nn}
\end{bmatrix}
\]
For example, using the third row of \(A\):
\[
\begin{align*}
\det A
&= 0 -1\det \begin{bmatrix} 3 & 5 \\ 7 & 4 \end{bmatrix} + 0 \\\\
&= -1(12-35) \\\\
&= 23
\end{align*}
\]
Alternatively, expanding down the first column of \(A\):
\[
\begin{align*}
\det A
&= 3\det \begin{bmatrix} 5 & 4 \\ 1 & 0 \end{bmatrix}
-7\det \begin{bmatrix} 2 & 5 \\ 1 & 0 \end{bmatrix}
+0\det \begin{bmatrix} 2 & 5 \\ 5 & 4 \end{bmatrix} \\\\
&= 3(-4)-7(-5)+0 \\\\
&= 23.
\end{align*}
\]
These computations demonstrate an important property: the determinant of a triangular matrix is
the product of its diagonal entries. For example:
\[
\det \begin{bmatrix}
1 & 7 & 5 & 4 & 2 \\
0 & 2 & 9 & 2 & 3 \\
0 & 0 & 3 & 5 & 7\\
0 & 0 & 0 & 4 & 7\\
0 & 0 & 0 & 0 & 5
\end{bmatrix} = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120.
\]
Additionally, note that the transpose of a matrix does not affect its determinant.
Thus, for any square matrix \(A\):
\[
\det A = \det A^T.
\]
Consider the matrix \(A\) again. The transpose of \(A\) is:
\[
A^T = \begin{bmatrix} 3 & 7 & 0 \\ 2 & 5 & 1 \\ 5 & 4 & 0 \end{bmatrix} \qquad
\]
Then
\[
\begin{align*}
\det A^T
&= 3\det \begin{bmatrix} 5 & 1 \\ 4 & 0 \end{bmatrix}
-7\det \begin{bmatrix} 2 & 1 \\ 5 & 0 \end{bmatrix}
+0\det \begin{bmatrix} 2 & 5 \\ 5 & 4 \end{bmatrix}\\\\
&= 3(-4) -7(-5)+0 = 23 \\\\
&= \det A.
\end{align*}
\]
This result is supported by the relationship between cofactors in \(A\) and \(A^T\).
The cofactor of \(a_{1j}\) in \(A\) is equal to the cofactor of \(a_{j1}\) in \(A^T\).
Therefore, the cofactor expansion across the first row of \(A\) is the same as the cofactor expansion
down the first column of \(A^T\). This relationship holds for any row or column of any square matrix.
Determinants are multiplicative. For example, given:
\[
A = \begin{bmatrix} 1 & 2 \\ 8 & 9 \end{bmatrix}, \qquad
B = \begin{bmatrix} 5 & 7 \\ 4 & 6 \end{bmatrix}, \qquad
AB = \begin{bmatrix} 13 & 19 \\ 76 & 110 \end{bmatrix}
\]
then
\[
\begin{align*}
&\det A = 9-16=-7, \\\\
&\det B = 30-28 =2, \\\\
&\det AB = 1430-1444=-14 = (\det A)(\det B).
\end{align*}
\]
Note: \(\det (A+B) \neq \det A + \det B\).
Finally, observe how elementary row operations affect determinants:
\[
\begin{align*}
&\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad-bc \\\\
&\det \begin{bmatrix} c & d \\ a & b \end{bmatrix} = cb-ad=-(ad-bc) \\\\\
&\det \begin{bmatrix} a & b \\ kc & kd \end{bmatrix} = kad-kbc = k(ad-bc) \\\\
&\det \begin{bmatrix} a & b \\ c+2k & d+2k \end{bmatrix} = a(d+2k)-b(c+2k) = ad-bc
\end{align*}
\]